Received: July 5, 1985;accepted: October 7, 1985

LIGHT-INDUCED REACTIONS OF 1,1,1-TRIFLUORO-3-DECYN-2-ONE WITH OLEFINS

P. MARGARETHA ", C. SCHRODER

Institut für Organische Chemie, Universität Hamburg, M.L.King Platz 6 D-2000 Hamburg 13 **(F.R.G.)**

S. WOLFF and W.C. AGOSTA

Laboratories of the Rockefeller University, New York, NY 10021 (U.S.A.)

SUMMARY

Irradiation (λ = 300 nm) of 1,1,1-trifluoro-3-decyn-2-one in the presence of olefins affords RH-reduction products (tertiary alcohols) in addition to $[2+2]$ -(oxetans) and $[3+2]$ -(dihydrofurans) cycloadducts.

INTRODUCTION

Irradiation of conjugated acetylenic ketmes in the presence of alkenes, e.g. 3-pentyn-2-one and 2,3-dimethyl-2-butene, affords oxetans as well as 2,3-dihydrofurans, both products arising from a common 1,4-biradical intemediate which frequently differs in spin state for the two types of addition $[1-3]$. As we had already found a pronounced influence of an α -fluoro substituent on the photochemical behaviour of cycloalkanones $[4]$ and 2-cycloalkenones [5,6] , we decided to investigate in what manner fluorine substituents would affect the above mentioned reactions of ynones. We now report results on the photochemical behaviour of 1,1,1-trifluoro-3-decyn-2-one (1) in the presence of various olefins.

RESULTS AND DISCUSSION

We first examined the reaction of 1 with 2,3-dimethyl-2-butene (2a), 2-methylpropene (<u>2b</u>) and 2-methoxypropene (<u>2c</u>). Irradiation (λ = 300 nm) of a benzene solution of these addends yields the oxetans $3 - 5$, the 2,3-dihydrofurans 6 and 7 , as well as the tertiary alcohols 8 and 9 (the spectral data of a mixture of 8a and 9a have already been reported [2]). The overall

0022-1139/86/\$3.50 **0022-1139/86/\$3.50** Elsevier Sequoia/Printed in The Netherlands

yield of these products, determined by measuring the conversion of 1 against an internal standard by GC , lies in the range of $25 - 45\%$. The relative product distribution is given in Table 1. Attempted gas chromatographic isolation of the RH-reduction products 9b and 9c led to formation of dienes 10b and 10c, respectively.

-
- **b** R^1 , $R^2 = H$; $R^3 = CH_3$
- c R, $R^2 = H_1$, $R^3 = OCH_3$

 $R = -C \equiv C - C_6 H_{13}$

Olefin Relative yield Overall Overall Product 3 4 5 6 7 8 9 $\frac{2a}{a}$ 36 $\frac{a}{b}$ - 42 14 8 30%

Product yields in reactions 1 + 2

TABLE 1

 $3a = 4a = 5a;$ b $3b = 4b;$ c $8b = 9b;$ d $8c = 9c$.

The assignment of the structures of the photoproducts is based on their 1_H -NMR - (Table 2) and mass spectra (Table 3). The predominant orientation of addition of the alkenes 2b and 2c to excited 1 leading to products with the CH_2 -group vicinal to oxygen is proven by the chemical shift and the magnitude of the geminal coupling constant of the methylene hydrogens ($6=4.7 - 4.1$ ppm, $J = 6$ Hz for oxetans 3 and 4, and $J = 11$ Hz for dihydrofurans 6 and 7, respectively). The corresponding AB-system for oxetan 5c appears at $6=3.5$ ppm with J = 10.6 Hz. Differentiation between E- and Z - dihydrofurans 6 and 7 is straightforward by analysis of the vicinal coupling constant of the olefinic protons, $J = 17$ and 10 Hz, respectively. As for the mass spectra, the oxetans are characterised by base peaks corresponding to the mass of the alkene radical cation formad via retro [2+2] cleavage.

 $\frac{2b}{2}$ 36 17 7 25 15 $\frac{2c}{ }$ 46 11 - 11 21 11 45%

Comparing the results obtained from 1 and 2 with those of similar methyl ketones (3-pentyn-2-one, 3-decyn-2-one, 5,5-dimethyl-3-hexyn-2-one) $[1,2]$ with the same olefins shows that the relative amount of oxetans $\underline{vs},$ 2,3-dihydrofurans increases for the trifluoroalkynone, and that a novel typ of product $(8 \text{ and } 9)$ is formed from 1 . The first effect is related to the influence of CF₃ vs. CH₃ on the behaviour of 1,4-biradical <u>11</u>, path a) ostensibly being favoured for $X = F$.

 $\frac{1}{1}$ H-NMR Spectroscopic Data of Photoproducts (in CDCl₃)

x 2.30 (t, W); 1.60-1.20 (m, 8H); 0.90 (t, 3H).

Y 2.08 (m, W); 1.55-1.20 (m, 6H); 0.90 (t, 3H).

TABLE 3

Mass Spectroscopic Data of Photoproducts a


```
^{\rm a} Mass spectra recorded at 70 eV
b C_{10}H_{13}F_3O = ketone 1
```
The second effect is connected to the fact that 1 is more easily reduced than the corresponding methyl ketone $(E_{1/2} \vee g. SCE, Pt-cathode, in$ CH₂CN with 10⁻¹M Bu₄NClO₄: 1 = -1.39 V, 3-decyn-2-one = -2.11 V) and therefore excited 1 becomes more susceptible to electron transfer (et) from the olefin; proton transfer (pt) in the radical ion pair and coupling of the resulting radicals then leads to 8 and 9, respectively.

We next studied the reaction of 1 with ethoxyethylene (12a) and t-butoxyethylene (12b). For both vinyl ethers 1:1 mixtures of diastereomeric oxetans 13 and 14 were obtained selectively and in very good yields (90%), the ${}^{1}H$ NMR spectra indicating that the orientation of addition of 12 to excited 1 is the same as that for alkenes 2. A similar preference for $[2+2]$ addition was noted in the cycloaddition of 3-pentyn-2-one and ketene diethyl acetal [3]. The reasons for this different behaviour of 1,4-biradical 15 from alkoxyalkenes, giving only [2+2] products is not yet fully understood.

Further, irradiation of 1 and $1,3$ -dioxol-2-one (16) gave one bicyclic oxetan product 17 selectively, albeit in low yield (20%). Again, as for the diastereomeric oxetans $3c$ and $4c$, 13 and 14 , and oxetan $5c$, the assignment of the configuration of 17, based on 1 H-NMR- and mass spectroscopic data alone, is not possible.

Finally we undertook quenching studies on the reactions between 1 and 2a as well as 1 and 12a. In the first series of experiments (λ = 350 nm), naphthalene quenched the appearance of all three products at about the same rate, thus indicating that **they** couldallbe formed **fran the** sane triplet state of 1. Stern-Volmer kinetics from both experiments indicate that the lifetime of this quenchable triplet species frcm 1 is of the same order of magnitude as that of triplet 3-pentyn-2-one, i.e. about 0.5 ns .

EXPERIMENTAL

General

Absorptions in the IR spectra are given in π^{-1} . The chemical shifts in the 400-MHz $^{-1}$ H-NMR spectra are given in ppm relative to TMS (coupling constants J in Hz). Mass spectra ware recorded at 70 eV. Analytical Gc was performed on a SE 30 capillary column. Preparative GC separations were run on 8m 2.5% SE 30 (column A), 4m 5% SE 30 (column B) or 8m 10% OV 17 (column C) .

starting Materials

Trifluorodecynone 1 [7], t-butoxyethylene (12b) [8] and 1,3-dioxol-2one $[9]$ were synthesized according to the literature. Alkenes $2a$, $2b$, $2c$ and 12a were purchased from FIJKA AG.

Photolyses

These were performed in a Rayonet RPR-100 photoreactor using 300 nm lamps. Thus argon-degassed solutions of 206 mg $(10^{-3}$ mol) 1 and 2.5 $.10^{-2}$ mol alkene in 50 ml benzene were irradiated for 50 - 80 h. Products ware isolated by preparative gas chromatography, all being liquids or oils.

Quenching Studies

The same photoreactor equipped with a merry-go-round set up and 350 nm lamps was used. The quencher (naphthalene) concentration varied from $0 - 2M$.

Irradiation of 1 with alkenes

With 2,3-dimethyl-2-butene (2a)

Separation on column B (135°, isotherm.) afforded three fractions, first 4-(Z-l-heptenyl)-2,2,3,3,-tetramethyl-5-trifluoranethyl-2,3-dihydrofuran $(7a)$, second 2- $(1-\alpha t$ inyl)-2-trifluoromethyl-3,3,4,4-tetramethyloxetan $(3a)$, and third a 2:1 mixture of 2,3-dimethyl-5-trifluoromethyl-2tridecen-6-in-5-ol (8a) and 2,3,3-trimethyl-4-trifluoromethyl-1-dodecen-5-in-4-ol (9a), IR (CCl_A) : 3600, 3550-3300, 2240.

With 2-mathylpropene (2b)

Separation on column C (160 $^{\circ}$, isotherm.) afforded two fractions, first a 4:2:1 mixture of $4-(Z-1-\text{hepteny1})-3,3-\text{dimethyl}-5-\text{trifluoromethyl}-$ 2,3-dihydrofuran (7b), 2-methyl-4-trifluoromethyl-1,3-dodecadien-5-in (10b) and $4-(E-1-\text{hepteny1})-dihydrofuran 6b$; second a 2:1 mixture of the regioisomeric 3,3- and 4,4-dimethyl - 2- (1-octinyl)-2-trifluoromethyloxetans 3b and 5b.

With 2-methoxypropene (2c)

Separation on column B (100 - 200°, 2°/min) afforded three fractions, first a 2:1 mixture of the diastered meric E and $Z - 4 - (1 - \text{hepteny1}) - 5 - \text{tri-}$ fluoromethyl-3-methoxy-3-methyl-2,3-dihydrofurans 6c and 7c, second a 1:1 mixture of cis 3-methoxy-3-methyl-2-(1-octinyl)-2-trifluoromethyloxetan (3c) and 2-methoxy-4-trifluoramethyl-1,3-dodecadien-5-in (10c), and third pure trans-3-methoxy-3-methyl-2- (1-octinyl)-2-trifluoromethyloxetan (4c).

With ethyl vinyl ether (12a)

Separation on column B (100 - 200°, 2°/min) afforded two fractions, each one containing one diasteredmeric $2-(1-\text{octiny1})-2-\text{trifluoromethyl-}$ 3-ethoxyoxetan (13a & 14a).

With t-butoxyethylene (12b)

Separation (conditions as for ethyl vinyl ether) afforded pure diasterecmeric 2-(1-octinyl)-2-trifluoromethyl-3-t.butoxyoxetans 13b & 14b.

With $1,3$ -dioxol-2-one (16)

The main product, 7-(1-octinyl)-7-trifluoromethyl-2,4,6-trioxabicyclo $[3.2.0]$ heptan-3-one was isolated on column A (180°, isotherm.), IR $(CCL_A):$ 2280, 1865.

ACKNOWLEDGEMENT

We are grateful to NATO (research grant n° 107.81) and to the Konrad-Adenauer-Stiftung for financial support of this work.

REFERENCES

- 1 S. Hussain and W.C. Agosta, Tetrahedron, 37 (1981) 3301.
- 2 S. Saba, S. Wolff, C. Schröder, P. Margaretha and W.C. Agosta, J. Am. Chem. Soc., 105 (1983) 6902.
- 3 V. Bhaskar Rao, C. Schröder, P. Margaretha, S. Wolff and W.C. Agosta, J. Org. Chem., 50 (1985) in the press.
- 4 K. Reinholdt and P. Margaretha, Helv. Chim. Acta, 66 (1983) 2534.
- 5 V. Desobry and P. Margaretha, Helv. Chim. Acta, 58 (1975) 2161.
- 6 G. Vo Thi and P. Margaretha, Helv. Chim. Acta, 59 (1976) 2236.
- 7 P. Margaretha, C. Schröder, S. Wolff and W.C. Agosta, J. Org. Chem., 48 (1983) 1925. -
- 8 W.H. Watanabe and L.E. Conlon, J. Am. Chem. Soc., 79 (1957) 2828.
- 9 M.S. Newman and R.W. Addor, J. Am. Chem. Soc., 75 (1953) 1263.