Received: July 5, 1985; accepted: October 7, 1985

LIGHT-INDUCED REACTIONS OF 1,1,1-TRIFLUORO-3-DECYN-2-ONE WITH OLEFINS

P. MARGARETHA *, C. SCHRÖDER

Institut für Organische Chemie, Universität Hamburg, M.L.King Platz 6 D-2000 Hamburg 13 (F.R.G.)

S. WOLFF and W.C. AGOSTA

Laboratories of the Rockefeller University, New York, NY 10021 (U.S.A.)

SUMMARY

Irradiation (λ = 300 nm) of 1,1,1-trifluoro-3-decyn-2-one in the presence of olefins affords RH-reduction products (tertiary alcohols) in addition to [2+2] -(oxetans) and [3+2] -(dihydrofurans) cycloadducts.

INTRODUCTION

Irradiation of conjugated acetylenic ketones in the presence of alkenes, e.g. 3-pentyn-2-one and 2,3-dimethyl-2-butene, affords oxetans as well as 2,3-dihydrofurans, both products arising from a common 1,4-biradical intermediate which frequently differs in spin state for the two types of addition [1-3]. As we had already found a pronounced influence of an α -fluoro substituent on the photochemical behaviour of cycloalkanones [4] and 2-cycloalkenones [5,6], we decided to investigate in what manner fluorine substituents would affect the above mentioned reactions of ynones. We now report results on the photochemical behaviour of 1,1,1-trifluoro-3-decyn-2-one (1) in the presence of various olefins.

RESULTS AND DISCUSSION

We first examined the reaction of <u>1</u> with 2,3-dimethyl-2-butene (<u>2a</u>), 2-methylpropene (<u>2b</u>) and 2-methoxypropene (<u>2c</u>). Irradiation (λ = 300 nm) of a benzene solution of these addends yields the oxetans <u>3</u> - <u>5</u>, the 2,3-dihydrofurans <u>6</u> and <u>7</u>, as well as the tertiary alcohols <u>8</u> and <u>9</u> (the spectral data of a mixture of <u>8a</u> and <u>9a</u> have already been reported [2]). The overall

0022-1139/86/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

yield of these products, determined by measuring the conversion of 1 against an internal standard by GC, lies in the range of 25 - 45%. The relative product distribution is given in Table 1. Attempted gas chromatographic isolation of the RH-reduction products 9b and 9c led to formation of dienes 10b and 10c, respectively.

- <u>b</u> R^1 , $R^2 = H$; $R^3 = CH_3$
- <u>c</u> R^{1} , $R^{2} = H$; $R^{3} = 0 CH_{3}$

 $R = -C \equiv C - C_6 H_{13}$

TABLE 1	
---------	--

Product yields in reactions 1 + 2

Olefin	Relative yield								Overall	
	Product	3	4	5	6	7	8	9		
2a		36 ⁶	a		-	42	14	8	30%	
<u></u> 2b		36 ^k	C	17	7	25	15	, c	25%	
<u>2c</u>		46	11	-	11	21	11	d	45%	

^a $\underline{3a} = \underline{4a} = \underline{5a}$; ^b $\underline{3b} = \underline{4b}$; ^c $\underline{8b} = \underline{9b}$; ^d $\underline{8c} = \underline{9c}$.

The assignment of the structures of the photoproducts is based on their ¹H-NMR - (Table 2) and mass spectra (Table 3). The predominant orientation of addition of the alkenes <u>2b</u> and <u>2c</u> to excited <u>1</u> leading to products with the CH₂-group vicinal to oxygen is proven by the chemical shift and the magnitude of the geminal coupling constant of the methylene hydrogens (δ = 4.7 - 4.1 ppm, J = 6 Hz for oxetans <u>3</u> and <u>4</u>, and J = 11 Hz for dihydrofurans <u>6</u> and <u>7</u>, respectively). The corresponding AB-system for oxetan <u>5c</u> appears at δ = 3.5 ppm with J = 10.6 Hz. Differentiation between E- and Z - dihydrofurans <u>6</u> and <u>7</u> is straightforward by analysis of the vicinal coupling constant of the olefinic protons, J = 17 and 10 Hz, respectively. As for the mass spectra, the oxetans are characterised by base peaks corresponding to the mass of the alkene radical cation formed via retro [2+2] cleavage.

Comparing the results obtained from <u>1</u> and <u>2</u> with those of similar methyl ketones (3-pentyn-2-one, 3-decyn-2-one, 5,5-dimethyl-3-hexyn-2-one) [1,2] with the same olefins shows that the relative amount of oxetans <u>vs</u>, 2,3-dihydrofurans increases for the trifluoroalkynone, and that a novel type of product (<u>8</u> and <u>9</u>) is formed from <u>1</u>. The first effect is related to the influence of CF_3 <u>vs</u>. CH_3 on the behaviour of 1,4-biradical <u>11</u>, path a) ostensibly being favoured for X = F.

¹H-NMR Spectroscopic Data of Photoproducts (in CDCl₃)

<u>3a</u>	X; 1.38, 1.19, 1.05, 0.81 (s, CH ₃).
<u>3b</u>	4.50 and 4.11 (AB, $J = 5.2$); X); 1.00, 0.86 (s, CH_3).
<u>3c</u>	4.55 and 4.38 (AB, $J = 6.4$); 3.32 (s, OCH_3); X); 1.26 (s, CH_3).
<u>4c</u>	4.73 and 4.20 (AB, J = 6.0); 3.32 (s, OCH_3); X); 1.47 (s, CH_3).
<u>5b</u>	3.62 and 3.47 (AB, $J = 10.6$); x); 1.30 (s, 6H, CH_3).
<u>6b</u>	6.11 (dq, J = 17.0, 1.5) and 5.87 (dt, J = 17.0, 7.2), olefinic; 4.05 (s, 2H, OCH_2); Y); 1.12 (s, 6H, CH_3).
<u>60</u>	6.16 (dq, J = 16.0, 1.6) and 6.12 (dt, J = 16.0, 7.1), olefinic; 4.47 and 4.09 (AB, J = 11.2); 3.22 (s, OCH_3); Y); 1.44 (s, CH_3).
<u>7a</u>	5.63 (dt, J = 9.0, 6.5) and 5.46 (dq, J = 9.0, 1.5), olefinic; Y ; 1.31 (s, 6H, C <u>H</u> ₃); 0.98 (s, 6H, C <u>H</u> ₃).
<u>7b</u>	5.76 (dt, J = 11.0, 7.0) and 5.60 (dq, J = 11.0, 2.0), olefinic; 4.11 (s, 2H, OCH_2); Y); 1.31 (s, 6H, CH_3).
<u>7c</u>	5.79 (dt, J = 11.5, 7.2) and 5.62 (dq, J = 11.5, 1.6), olefinic; 4.53 and 4.11 (AB, J = 11.3); 3.22 (s, OCH_3); Y); 1.37 (s, CH_3).
<u>8a</u>	2.75 and 2.55 (AB, $J = 14.0$); X); 1.86 (s, CH_3); 1.76 (s, 6H).
<u>9a</u>	5.03 (s, 1H); 5.00 (s, 1H); X); 1.94 (s, CH ₃); 1.35 (s, 6H, CH ₃)
<u>10b</u>	5.04 (s, 1H); 5.00 (s, 1H); 4.47 (m, 1H); X); 1.77 (s, CH_3).
<u>10c</u>	4.59 (m, 1H); 4.07 (s, 1H); 4.04 (s, 1H); 3.42 (s, OCH_3); X);
<u>13a</u>	4.70 (m, 1H), 4.52 (m, 2H), 3.69 (m, 1H), 3.42 (m, 1H), OCH; X ; 1.23 (t, CH_3).
<u>13b</u>	4.95 (m, 1H), 4.65 (m, 2H), OCH; X); 1.31 (s, 9H, CH_3).
<u>14a</u>	4.64 (m, 3H), 3.68 (m, 1H), 3.54 (m, 1H), OCH; X); 1.18 (t, CH ₃)
<u>14b</u>	4.75 (m, 2H), 4.50 (m, 1H), OCH; X); 1.19 (s, 9H, CH_3).
<u>17</u>	6.27 and 5.40 (d , $J = 3.6$, CH); X).

X 2.30 (t, 2H); 1.60-1.20 (m, 8H); 0.90 (t, 3H). Y 2.08 (m, 2H); 1.55-1.20 (m, 6H); 0.90 (t, 3H).

TABLE 3

Mass Spectroscopic Data of Photoproducts a

Monocyclic Oxet	ans	Mt	м⁺	- C ₁₀ H ₁₃ F ₃ O	b	Other	
<u>3a</u>	290	(4%)	84	(100%)			
<u>3b</u>	262	(0.5%)	56	(100%)			
<u>3c</u>	278	(5.3%)	72	(100%)			
<u>4c</u>	278	(0.5%)	72	(100%)			
<u>5b</u>	262	(0.5%)	56	(100%)			
<u>13a</u>	278	(0.9%)	72	(100%)			
<u>13b</u>	306	(0.1%)	100	(6%)		57 (C ₄ H ₉ ⁺ ,	100%)
<u>14a</u>	278	(0.8%)	72	(100%)			
<u>14b</u>	306	(0.2%)	100	(4%)		57 (C ₄ H ₉ ⁺ ,	100%)
<u>Dihydrofurans</u>		м*	м*	- сн ₃		base peak	
<u>7a</u>	290	(40%)	275	(48%)		41	
<u>7b</u>	262	(59%)	247	(30%)		43	
<u>7c</u>	278	(26%)	263	(30%)		43	
<u>Others</u>							
<u>8a</u> + <u>9a</u> :	290 (M [‡] , 1%)	, 83	(C6H11+	, 100%)			
<u>10c</u> :	260 (M [‡] , 4%)	, 190	(M [‡] - C	C ₅ H ₉ , 33%),	72 (10	00%)	
<u>17</u> :	292 (M ⁺ , 0.2	2%), 1	79 (M ⁺ -	- $[CF_3 + CO_2]$, 100	ł),	
	86 (0	^с 3 ^н 2 ^о 3 [*]	, 37%)				

^a Mass spectra recorded at 70 eV ^b $C_{10}H_{13}F_3O \approx \text{ketone } \underline{1}$ The second effect is connected to the fact that <u>1</u> is more easily reduced than the corresponding methyl ketone $(E_{1/2} \underline{vs}. SCE, Pt-cathode, in CH₃CN with <math>10^{-1}$ M Bu₄NClO₄: <u>1</u> = -1.39 V, 3-decyn-2-one = -2.11 V) and therefore excited <u>1</u> becomes more susceptible to electron transfer (et) from the olefin; proton transfer (pt) in the radical ion pair and coupling of the resulting radicals then leads to <u>8</u> and <u>9</u>, respectively.

We next studied the reaction of <u>1</u> with ethoxyethylene (<u>12a</u>) and t-butoxyethylene (<u>12b</u>). For both vinyl ethers 1:1 mixtures of diastereomeric oxetans <u>13</u> and <u>14</u> were obtained selectively and in very good yields (90%), the ¹H NMR spectra indicating that the orientation of addition of <u>12</u> to excited <u>1</u> is the same as that for alkenes <u>2</u>. A similar preference for [2+2] addition was noted in the cycloaddition of 3-pentyn-2-one and ketene diethyl acetal [3]. The reasons for this different behaviour of 1,4-biradical <u>15</u> from alkoxyalkenes, giving only [2+2] products is not yet fully understood.

Further, irradiation of <u>1</u> and 1,3-dioxol-2-one (<u>16</u>) gave one bicyclic oxetan product <u>17</u> selectively, albeit in low yield (20%). Again, as for the diastereomeric oxetans <u>3c</u> and <u>4c</u>, <u>13</u> and <u>14</u>, and oxetan <u>5c</u>, the assignment of the configuration of <u>17</u>, based on ¹H-NMR- and mass spectroscopic data alone, is not possible.

Finally we undertook quenching studies on the reactions between <u>1</u> and <u>2a</u> as well as <u>1</u> and <u>12a</u>. In the first series of experiments (λ = 350 nm), naphthalene quenched the appearance of all three products at about the same rate, thus indicating that they could all be formed from the same triplet state of <u>1</u>. Stern-Volmer kinetics from both experiments indicate that the lifetime of this quenchable triplet species from <u>1</u> is of the same order of magnitude as that of triplet 3-pentyn-2-one, <u>i.e.</u> about 0.5 ns .

EXPERIMENTAL

General

Absorptions in the IR spectra are given in cm⁻¹. The chemical shifts in the 400-MHz ¹H-NMR spectra are given in ppm relative to TMS (coupling constants J in Hz). Mass spectra were recorded at 70 eV. Analytical GC was performed on a SE 30 capillary column. Preparative GC separations were run on 8m 2.5% SE 30 (column <u>A</u>), 4m 5% SE 30 (column <u>B</u>) or 8m 10% OV 17 (column <u>C</u>).

Starting Materials

Trifluorodecynone <u>1</u> [7], t-butoxyethylene (<u>12b</u>) [8] and 1,3-dioxol-2one [9] were synthesized according to the literature. Alkenes <u>2a</u>, <u>2b</u>, <u>2c</u> and 12a were purchased from FLUKA AG.

Photolyses

These were performed in a Rayonet RPR-100 photoreactor using 300 nm lamps. Thus argon-degassed solutions of 206 mg $(10^{-3} \text{ mol}) \underline{1}$ and 2.5 $.10^{-2}$ mol alkene in 50 ml benzene were irradiated for 50 - 80 h. Products were isolated by preparative gas chromatography, all being liquids or oils.

Quenching Studies

The same photoreactor equipped with a merry-go-round set up and 350 nm lamps was used. The quencher (naphthalene) concentration varied from 0 - 2M.

Irradiation of 1 with alkenes

With 2,3-dimethyl-2-butene (2a)

Separation on column <u>B</u> (135°, isotherm.) afforded three fractions, first 4-(Z-1-heptenyl)-2,2,3,3,-tetramethyl-5-trifluoromethyl-2,3-dihydrofuran (<u>7a</u>), second 2-(1- ∞ tinyl)-2-trifluoromethyl-3,3,4,4-tetramethyloxetan (<u>3a</u>), and third a 2:1 mixture of 2,3-dimethyl-5-trifluoromethyl-2tridecen-6-in-5-ol (<u>8a</u>) and 2,3,3-trimethyl-4-trifluoromethyl-1-dodecen-5-in-4-ol (<u>9a</u>), IR (∞ 1₄): 3600, 3550-3300, 2240.

With 2-methylpropene (2b)

Separation on column <u>C</u> (160°, isotherm.) afforded two fractions, first a 4:2:1 mixture of 4-(Z-1-heptenyl)-3,3-dimethyl-5-trifluoromethyl-2,3-dihydrofuran (7b), 2-methyl-4-trifluoromethyl-1,3-dodecadien-5-in(10b) and <math>4-(E-1-heptenyl)-dihydrofuran <u>6b</u>; second a 2:1 mixture of the regioisomeric 3,3- and 4,4-dimethyl - 2-(1-octinyl)-2-trifluoromethyloxetans <u>3b</u> and <u>5b</u>.

With 2-methoxypropene (2c)

Separation on column <u>B</u> (100 - 200°, 2°/min) afforded three fractions, first a 2:1 mixture of the diastereomeric E and Z - 4-(1-heptenyl)-5-tri-fluoromethyl-3-methoxy-3-methyl-2,3-dihydrofurans <u>6c</u> and <u>7c</u>, second a 1:1 mixture of cis 3-methoxy-3-methyl-2-(1-octinyl)-2-trifluoromethyloxetan (<u>3c</u>) and 2-methoxy-4-trifluoromethyl-1,3-dodecadien-5-in (<u>10c</u>), and third pure trans-3-methoxy-3-methyl-2-(1-octinyl)-2-trifluoromethyloxetan (<u>4c</u>).

With ethyl vinyl ether (12a)

Separation on column <u>B</u> $(100 - 200^{\circ}, 2^{\circ}/\text{min})$ afforded two fractions, each one containing one diastereomeric 2-(1-octinyl)-2-trifluoromethyl-3-ethoxyoxetan (13a & 14a).

With t-butoxyethylene (12b)

Separation (conditions as for ethyl vinyl ether) afforded pure diasterecmeric 2-(1-octinyl)-2-trifluoromethyl-3-t.butoxyoxetans <u>13b</u> & <u>14b</u>.

With 1,3-dioxol-2-one (16)

The main product, 7-(1-octinyl)-7-trifluoromethyl-2,4,6-trioxabicyclo [3.2.0]heptan-3-one was isolated on column <u>A</u> (180°, isotherm.), IR (OCl_4): 2280, 1865.

ACKNOWLEDGEMENT

We are grateful to NATO (research grant n° 107.81) and to the Konrad-Adenauer-Stiftung for financial support of this work.

REFERENCES

- 1 S. Hussain and W.C. Agosta, Tetrahedron, 37 (1981) 3301.
- S. Saba, S. Wolff, C. Schröder, P. Margaretha and W.C. Agosta,
 J. Am. Chem. Soc., 105 (1983) 6902.
- V. Bhaskar Rao, C. Schröder, P. Margaretha, S. Wolff and W.C. Agosta,
 J. Org. Chem., <u>50</u> (1985) in the press.
- 4 K. Reinholdt and P. Margaretha, Helv. Chim. Acta, 66 (1983) 2534.
- 5 V. Desobry and P. Margaretha, Helv. Chim. Acta, 58 (1975) 2161.
- 6 G. Vo Thi and P. Margaretha, Helv. Chim. Acta, <u>59</u> (1976) 2236.
- 7 P. Margaretha, C. Schröder, S. Wolff and W.C. Agosta, J. Org. Chem., 48 (1983) 1925.
- 8 W.H. Watanabe and L.E. Conlon, J. Am. Chem. Soc., 79 (1957) 2828.
- 9 M.S. Newman and R.W. Addor, J. Am. Chem. Soc., <u>75</u> (1953) 1263.